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It has been shown theoretically that the central-cell potential of phosphorus ion�s� embedded in a silicon
nanocrystal effectively mixes electronic states of X and � bands. Such a mixing, enhanced by the quantum
confinement effect, straightens the nanocrystal band structure and substantially intensifies interband radiative
recombination. We have found that it is possible to manipulate the radiative decay rate by varying phosphorus
concentration in the nanocrystal.

DOI: 10.1103/PhysRevB.79.035302 PACS number�s�: 78.67.Hc, 73.20.Hb, 78.55.Ap

I. INTRODUCTION

Improvement of luminescent properties of various silicon-
based structures remains up to now a challenge for modern
optoelectronics. Because of indirect band gap of silicon, light
emission turns out to be suppressed or completely forbidden.
This drawback is partially overcome in nanocrystals �NCs�
due to the Heisenberg uncertainty relations and phonon as-
sistance. Previous calculations1–4 of phonon-assisted radia-
tive recombination rates �R

−1 in Si crystallites yielded the val-
ues varying from 105 to 5�102 s−1 as the crystallite radius
increases from 1 to 2.5 nm. Recently, Sykora et al.5 reported
on the measurements of the decay rates �R

−1 equal to 107 s−1

but for too small NCs, whose sizes were less, presumably,
than 2 nm. At the same time, calculated rate values �NR

−1 of the
main competitive nonradiative processes, such as capture on
dangling bonds or Auger recombination, considerably exceed
�R

−1. For instance, the Auger recombination rates for 2–5 nm
crystallites are of the order of 107 s−1 or greater.6,7 On aver-
age, the rate increases as the NC size decreases. On the con-
trary, capture on dangling bonds becomes faster in greater
NCs. Corresponding rates sharply raise from �101 to
1011 s−1 for electrons and from 107 to 1011 s−1 for holes �p.
223 of Ref. 8�. As a result, interband transitions in silicon
NCs should mainly occur through the nonradiative channel.
This essentially reduces the quantum yield of the photolumi-
nescence �PL� �=�R

−1 /�PL
−1 in silicon NCs. Here, we intro-

duced the PL rate �PL
−1 =�R

−1+�NR
−1 . Obviously, if �R

−1��NR
−1 , to-

tal PL time coincides with the smallest time being the time of
the nonradiative processes �PL��NR. Correspondingly, the
quantum yield may be written approximately as �=�R

−1 /�NR
−1 ,

which is much less than unity for the above-mentioned typi-
cal values of �R and �NR.

However measurements carried out by various experi-
mental groups �see, e.g., Refs 9–13� exhibit �PL which are
not so small as predicted by the theory. Typical values of �PL
vary within a wide range of about 1–1000 �s depending on
the particle size, temperature, detected wavelength, method
of preparation, etc. Moreover, Miura et al.14 measured �R and
�NR separately and found them to be close to each other for
different samples containing Si crystallites with different
mean diameter varying from sample to sample from 3.5 to 6
nm. They estimated the quantum efficiency as very high and
equal to several tenths of percent. That may be possible due

to a low excitation power significantly reducing an efficiency
of the Auger recombination, and presumably, lower values of
the capture rates than that predicted theoretically.8 This cir-
cumstance is an evidence in favor of possible achievement of
relatively high values of the quantum yield and PL intensity
in real silicon structures. Nevertheless, more often, the PL
quantum yield in silicon NCs does not exceed several
percent.15,16 As a consequence, improvement of the PL quan-
tum efficiency in Si NCs remains an actual problem of nano-
photonics.

As a means to modify the optical properties of silicon
crystallites, doping with shallow impurities has been sug-
gested. In particular, experiments reveal multiple rise of the
PL intensity in Si quantum dots due to their doping with
phosphorus.17–21 Usually,17–21 this is attributed to the passi-
vation of dangling bonds �i.e., neutral or charged Pb centers
at the surface� by phosphorus, which decreases the nonradi-
ative recombination rate �NR

−1 . However, it has been also
shown experimentally21 that PL lifetime varies weakly with
increasing P concentration in the NC, while the PL intensity,
which is proportional to �, increases significantly. Hence, the
radiative recombination rate changes under doping as well.
In other words, introduction of phosphorus into the NCs
strongly influences not only the nonradiative channel but
also the radiative one. The main purpose of our paper is to
understand the mechanism for the PL improvement in
P-doped silicon quantum dots and explain the role of phos-
phorus in the increase in �R

−1.
We shall first demonstrate theoretically that doping can

substantially modify the rate of the radiative transitions in Si
NCs. In what follows, within the framework of envelope-
function approximation, we calculate the radiative lifetimes
for two different cases: �1� doping with a single donor placed
in an arbitrary position inside the dot and �2� highly and
homogeneously doped dot with donor concentration nD.

Recently, Iori et al.22,23 computed the imaginary part
����� of the dielectric function of Si NC �the diameter was
less than 2 nm� doped with a single P atom. However, it is
difficult, as a rule, to extract information about the transitions
responsible for PL from the dependence �����. Therefore, it
seems to be useful to employ the dielectric function for
analysis of absorption spectra rather than emission ones.

Considering the PL, we suppose that main contribution to
the emission spectrum comes from the basic interband elec-
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tron transitions between the ground conduction and valence
states. For this reason, in the following, we shall compute the
radiative lifetimes for these transitions only.

First, we discuss the structure of the Coulomb donor field
in the NC and its contribution to the electronic state forma-
tion in the conduction and valence bands. At this stage, we
consider the single-band k-p Hamiltonians and do not take
interband interaction into account. Such an approach, de-
scribed in Sec. II, may be referred to as the zero-
approximation model or unperturbed system. Interband mix-
ing of X and � bands is discussed in Sec. III. Such a mixing
becomes possible due to the short-range character of the do-
nor field and leads to a partial straightening of the band
structure of Si NC. In turn, the straightening causes an es-
sential increase in the radiative decay rate, calculation of
which is presented in Sec. IV. Finally, in conclusion, we
argue the perspectives of some other impurities to be “accel-
erators” of the radiative interband recombination in silicon
NCs.

II. UNPERTURBED SYSTEM

When finding the electronic structure of the P-doped dot,
both the long-range hydrogenlike V and the short-range W
�so-called central-cell field24� parts of the Coulomb potential
energy have to be included in a single-particle Hamiltonian.
The long-range bulklike hydrogenic potential VH=−e2 /�sr,
where �s is the silicon permittivity, is transformed in the NC
into the sum V=Vsp�r�+Vie�r� due to appearance of the po-
larization charges at the NC boundary. Here

Vsp�r� =
e2��s − �d�

2�sR
�
l=0

	
l + 1

l�s + �l + 1��d

r2l

R2l �1�

is the self-polarization potential energy originating from the
interaction between the electron and its own image. Here �d
is the permittivity of the wide-band dielectric matrix sur-
rounding the NC and R stands for the NC radius. The term
Vie�r� describes the direct electron-ion interaction, as well as
the interaction of the electron with the ion image,

Vie�r� = −
e2

�s�r − h�

−
e2��s − �d�

�sR
�
l=0

	
hlrl

R2l

l + 1

l�s + �l + 1��d
Pl�cos 
� , �2�

where h is the donor position vector, Pl�cos 
� is the Leg-
endre polynomial, and 
 is the angle between r and h.

The microscopic short-range part W of the Coulomb po-
tential energy, created by a point charge, is usually con-
structed with the use of a microscopic dielectric function.25

We shall employ the dielectric function of Walter and
Cohen26 that can be fitted with the following function:

1

��k�
=

1

�s
+

Ak2

�2 + k2 +
�1 − A − 1/�s�k2

�2 + k2 . �3�

Here, � and � are equal to 0.82 and 5.0 of the reciprocal
Bohr radius, respectively, and A=1.142. Pantelides and Sah25

obtained a resembling expression earlier using a fitting of
1 /��k� to the data of Nara27 obtained within the framework
of free-electron model. However, ��k� dependence found in
Ref. 27 turns out to be incorrect at k less than or of the order
of 2 /a, where a is the lattice constant of silicon. Mean-
while, precisely the behavior of ��k� at small k determines
the spatial decay of potential W. More accurate
pseudopotential-based calculations of Walter and Cohen26 al-
low one to correctly describe ��k� in this domain. As a result,
the short-range potential is written as follows:

W�r,h� = −
e2

�r − h��A exp�− ��r − h��

+ �1 − A −
1

�s
	exp�− ��r − h��
 . �4�

As was pointed out earlier by Pantelides and Sah,25 existence
of the local short-range field is an inherent property of the
isocoric impurity, such as phosphorus or aluminum. All other
impurities produce nonlocal and stronger perturbation, the
description of which within the kp method is questionable.
The PL enhancement discussed in the present paper is exclu-
sively due to the short-range field of phosphorus, as will be
shown below.

If the NC is highly doped, each the electron interacts with
all the donors inside the NC and with all other electrons
emitted from the donors into the NC. Both the long-range
interaction with donors and the electron-electron interaction
may be described within the framework of mean-field ap-
proximation, in which the electron potential energy V�r� is
found from the Poisson equation div���r��V�r��=4e��r�.
Here e is the positive elementary charge, the dielectric func-
tion ��r� is equal to �s inside and to �d outside the NC, and
��r� is the charge density that is the sum of two parts; ��r�
=�i�r�+�e�r�, where �i�r� and �e�r� are charge densities of
the N donor ions and N−1 electrons, respectively. Supposing
a high and homogeneous doping inside the dot, it is possible
to assume ��r� to be equal to the charge density of a single
uncompensated positive charge e homogeneously distributed
over the dot volume ��r�=3e��R−r� /4R3. Solving Pois-
son equation with ��r� yields inside the NC28 V�r�
=e2�r2 /R2−1−2�s /�d� /2�sR. This expression should be used
for the long-range Coulomb field in the many-donor case
instead of the sum Vsp�r�+Vie�r�. On the contrary, short-
range field W is not described with the Poisson equation
because of its microscopic nature. Therefore, it is included
separately in the Schrödinger-type equation as the sum of the
terms defined by Eq. �4�. Finding envelope functions from
the Schrödinger-type equation with long-range field V�r� and
short-range field W=� jW�r−h j� is described in detail in Ref.
28. Below, we employ the results obtained in this work.

Determination of the electronic structure of a P-doped
silicon crystallite exhibits a key role of the short-range field
in the electron state formation.28–34 In particular, in the con-
duction band, the spinless ground state �being sixfold degen-
erate in an undoped dot� splits due to the short-range field
similar to bulk Si into a singlet with the lowest energy, and
doublet and triplet groups of states. Such a splitting occurs,
in fact, independent of donors’ distribution in the dot. The
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wave functions �I of the two �if spin is taken into account�
ground states, with initial �I� being the ones under the basic
radiative transition, have the form28

��I � ��� = �� �
�1,b

�b��1���1�b . �5�

Here, ��= �↑  , �↓  stand for “up” and “down” spinors,
�b��1� are the expansion coefficients, ��1 are the Bloch
functions of the representation �1 of X point, and ket vector
�b describes envelope functions of the isotropic zero-order
k-p Hamiltonian �see Ref. 28 for details�.

The Bloch functions ��1 are built in accordance with the
symmetry of the irreducible representations A1, E, and T2 of
the tetrahedral group Td. In particular, �A1�uA�r� describes
the singlet state in the bulk silicon, while �E�1,2��uE

�1,2��r�
and �T2

�1,2,3��uT
�1,2,3��r� are the doublet and triplet functions,

respectively. Function �A1 has a nonzero value at the donor
site, in contrast to the functions �E�1,2� and �T2

�1,2,3�, which
are equal to zero.24 Hereafter, we shall use the free-electron
Bloch functions represented by plane waves.35 Such a choice
is dictated with not only the simplicity of the model com-
pared to, e.g., the pseudopotential approach, but also a better
agreement between the experimental data and the computed
energy splitting in the conduction band of bulk silicon.

Because functions �E�1,2� and �T2
�1,2,3� describe the dou-

blet and triplet, i.e., excited electron states which are not
involved into the basic electron-hole transition, we do not
adduce here the explicit expressions for these functions and
refer the readers to the book by Yu and Cardona35 �Sec. IID2�
for details. On the contrary, the singlet state contributes to
the electron-hole recombination. The Bloch function of the
singlet has the form

�A1 = 2 �
cos�2x/a�cos�2y/a� + c.p.

�3
, �6�

where notation c.p. means two terms obtained from the first
one by the cyclic permutations of x, y, and z. The origin of
coordinates is situated at an atom. Factor 2 in Eq. �6� pro-
vides the correct norm of the total wave function �I.

In order to find the electronic states in the dot, we have to
solve the single-particle Schrödinger-type equation for the
envelope-function vector ��,

�H + U�r� + V�r� + W�r���� = ��� . �7�

Here, H is the bulk k ·p Hamiltonian operator acting in space
of the six-dimensional �6D� envelope-function vectors ��, �
is the electron energy, and U�r� is the confining potential
equal to infinity outside the NC and zero inside. The compo-
nents of the 6D vector �� are slowly varied expansion co-
efficients � j�r� of the total wave function in the Bloch-state
basis.

Solving equations such as Eq. �7� has been described in
detail in Refs. 28 and 36. The method used there was based
on a separation of the Hamiltonian matrix on the isotropic H0
and anisotropic HA parts. The isotropic part, called here as
the Hamiltonian operator of the zeroth approximation, in-
cludes the average of the total k-p Hamiltonian operator over
angles in k space and the confining potential. Anisotropic

part contains anisotropic elements of the total k-p Hamil-
tonian operator and the Coulomb perturbation.

Because of the isotropic and diagonal form of the operator
H0+U�r�, it is possible to classify its eigenstates similar to
atomic systems using common terminology such as s-, p-,
d-type states, etc. Accordingly, one may formally expand the
components of the envelope-function vectors over these
eigenstates as

� j�r� = �
b

Bjb�b , �8�

where �b stands for the s, p, d states, etc., and Bjb are the
expansion coefficients.

As was shown in Refs. 28 and 36, it is sufficient to keep
in expansion �8� only the s and p states to determine the
ground-state envelope functions because all the other unper-
turbed states have too high energies and weakly mix with the
lowest states. The s- and p-type functions can be written as

�s � ��r� =� 

2R3 j0�r/R� , �9�

�pn � �n�r� =� 3

2R3

j1��r/R�
j0���

xn

r
,

where n=1,2 ,3, j0,1�x� are the spherical Bessel functions,
and � is the first root of j1�x�. Thus, we restrict the set of the
envelope functions �b in the sum in Eq. �5� with only the s-
and p-type functions �Eq. �9��.

In the case of the central-symmetric donor distribution
inside the NC, coefficient �s�A1� in Eq. �5� is close to 1,
while all the other coefficients are negligibly small. As a
result, wave functions of the two initial states can be repre-
sented approximately by �����A1�s��. If the donor posi-
tion is asymmetric, all the coefficients �b�X1� should be
taken into account in expansion �5�. In this case, the portions
of all Bloch and envelope functions are determined
numerically.28

Finding of the electron states in the valence band is simi-
lar to that described above for the conduction band. The only
difference is that we have to take into account the spin-orbit
interaction in the k-p Hamiltonian operator and write it in the
basis of Bloch functions ��25� of � point. In the valence
band, no additional splitting, other than the spin-orbit one,
arises until donors’ distribution is of spherical symmetry.37 In
this case, the short-range field results only in a shift of the
energy levels. The upper energy level in the valence band is
fourfold degenerate. Wave functions �F of this quadruplet
�final �F� electron states, or equally, initial hole states� are
the products of the Luttinger functions �M of the total an-
gular momentum 3/2 with M = �1 /2, �3 /2 and the s-type
envelope function ��F���M= �M�s.37 If the donor posi-
tion is asymmetric, M is no longer a good quantum number.
In this case, the upper quadruplet splits into two doublets
whose wave functions have rather cumbrous expressions.37

We do not cite them here. Nevertheless, it is possible to write
them in some general form similar to that for the initial state
�Eq. �5��,

�-X MIXING IN PHOSPHORUS-DOPED SILICON… PHYSICAL REVIEW B 79, 035302 �2009�

035302-3



��F = �
�25�,b,�

�b���25����25��b�� . �10�

Coefficients �b���25�� have been found earlier.37

Spinless irreducible representation �25� of the � point
consists of three basic Bloch functions denoted usually as
�YZ, �XZ, or �XY. According to the free-electron model35

these functions are represented as

�YZ = 2�sin�2x/a�cos�2y/a�cos�2z/a�

+ cos�2x/a�sin�2y/a�sin�2z/a�� ,

�XZ = 2�sin�2y/a�cos�2x/a�cos�2z/a�

+ cos�2y/a�sin�2x/a�sin�2z/a�� ,

�XY = 2�sin�2z/a�cos�2x/a�cos�2y/a�

+ cos�2z/a�sin�2x/a�sin�2y/a�� . �11�

It is seen that all Bloch functions ��25� are equal to zero at
the donor site �x=y=z=0�.

III. �-X MIXING BY THE SHORT-RANGE FIELD

It is well known that indirect radiative transitions may
occur with phonon assistance. In this case the phonons com-
pensate the momentum deficiency under the transition. The
central-cell donor potential acts similarly. Because of the
long-range character in momentum space, the central-cell po-
tential can mix the Bloch states of distant points in the Bril-
louin zone. In particular, the central-cell field mixes three
nonequivalent X points in the conduction band of
silicon24—X-X mixing that is called usually as a valley-orbit
interaction.

Similarly, the central-cell potential couples the Bloch
states of the X and � points ��-� mixing�. Naturally, the X-X
mixing results in essentially stronger energy
corrections28,30,33 compared to those originated from the �-�
mixing. At the same time, the �-� mixing involves the
Bloch states ��15 and ��2� in the initial electron states ��I
and the Bloch states ��4 in ��F, see Fig. 1. The presence of
the Bloch states ��15 and ��2�, and ��4 in the modified
initial electron and hole states, respectively, transforms the
electron-hole indirect transition into partly direct, which can
significantly �1–2 orders of magnitude� increase the radiative
recombination rate.

Thus, the short-range donor field mixes the initial ��I or
the final ��F electron states with the so-called intermediate
�i� states ��i

�I� or ��i
�F� having Bloch functions ��15 and

��2� or ��4, respectively. We neglect all the other X and �
bands with too low or high energies. Taking into account the
short-range Coulomb field as a first-order perturbation, one
can modify the wave functions of the initial and final elec-
tron states as follows:

��I,F = ��I,F + �
i

CI,F�i���i
�I,F� . �12�

Here, CI,F�i�= ��i
�I,F��W��I,F / ��I,F−�i� are the amplitude co-

efficients of the intermediate states arising due to the donor

field, with �I,F and �i being the energies of the initial/final
and intermediate states, respectively. For convenience, one
can represent wave functions of the intermediate states
��i

�I,F� in the form similar to ��I or ��F,

��i
�I,F� = �

�,b,�
�b�������b�� , �13�

where �� are the Bloch functions of representations �15 and
�2� for ��i

�I� and �4 for ��i
�F�. Expansion coefficients �b����

are determined as solutions of eigenvector and eigenvalue
problems for the k-p Hamiltonian operators in �15, �2�, and
�4 bands.

Bloch functions ��15 of triply degenerate band �15 are
usually denoted as �X, �Y, and �Z. From the symmetry
point of view, they are similar to the Bloch functions �YZ,
�XZ, and �XY of the band �25� and differ from them by the
sign between the two terms in Eq. �11�.35 �2� is a simple
band described by the Bloch function35

��2� � �XYZ = 2�cos�2x/a�cos�2y/a�cos�2z/a�

− sin�2x/a�sin�2y/a�sin�2z/a�� . �14�

Bloch functions of the sixfold band �4 may be written as35

��4
jk=2 sin�2xj /a�cos�2xk /a� with all possible, but dif-

fering from each other, values of j and k. For all the above
Bloch functions, the coordinates are counted from an atomic
site.

In the case where the donor is of substitution type, Bloch
functions ��15 and ��4 are equal to zero at the donor site
while ��2� has some finite value. Since the short-range Cou-

�2 ’

�25 ’

�15

X1

X4

FIG. 1. �Color online� Schematic representation of the phonon-
assisted and donor-induced transitions in silicon crystallite. Bold
�blue� arrows indicate virtual transitions induced by the donor field
or phonon from the initial electron ��1� and hole ��25�� states to the
intermediate states �15, �2�, and �4, respectively. Thin �red� arrows
correspond to the transitions with photon from the intermediate
states to the final ones. Dashed �red� arrow indicates indirect no-
phonon radiative transition between the initial and the final states.
Horizontal lines represent energy levels in all the bands involved in
the recombination process.
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lomb interaction differs from zero within the nearest vicinity
of the donor nucleus, coefficients CI��15� and CF��4� have to
be much less than CI��2��. Figure 2 illustrates this situation.
We have depicted in the figure electron densities within a
unit cell in plane z=0 for the Bloch states �A1, ��2�, ��4

12,
and �Z that, in fact, coincides with −�XY at z=0. The donor
site is situated at the center of the unit cell and shown with a
disk. The disk radius is equal to the typical radius �−1 of the
short-range donor field. It is seen that the disk covers light
areas corresponding to the greatest values of the electron
densities in states �A1 and ��2�. Therefore, the coupling of
Bloch states �A1 and ��2� should be efficient. On the con-
trary, Bloch states ��25�, ��15, and ��4 have densities close
to zero �dark areas� under the disk. This means that mixing
of �A1 with ��25� or ��15, as well as of ��25� with ��4, will
be essentially weaker than A1-�2� mixing. On this basis, we
neglect coefficients CI��15� and CF��4� in the subsequent
calculations. In turn, CI��2�� should be kept in Eq. �12�. As a
result, the wave function of the final electron state remains
invariable, ��F= ��F; while the wave function of the initial
state is modified by the short-range donor field ��I= ��I
+CI��2�����2�

, where ���2�
 is the wave function in the band

�2�
Since �2� is a simple band, it is possible to describe elec-

tron states in this band with a usual effective-mass approxi-
mation as a product of the corresponding Bloch function and
some envelope function. In particular, if the donor distribu-
tion in the NC has spherical symmetry, the ground state in
�2� band has an envelope function of s type and the total
wave function ���2�

= ��2��s. All the other states in �2�
band have p-, d-, 2s-type, etc., envelope functions and
slightly contribute to the �-� mixing. In case of asymmetric
donor distribution, the envelope function of the ground state
in the �2� band will be predominantly a result of the s-p
hybridization. Then the expression for the wave function of
the intermediate state �Eq. �13�� is transformed into ���2�


= ��2����b�b��2���b, where index b runs over s, px, py, and
pz.

Consequently, we have to determine the only coefficient
CI��2��= ���2�

�W��I / ���A1�−���2��� for the ground state in

�2� band. Here, ��A1� is the energy of the initial state—the

ground state in the �1 band. In order to calculate the matrix
element ���2�

�W��I, we employ Eq. �4� for W and Eqs. �6�
and �14� for the Bloch functions. Energies ��A1� and ���2��,
as well as expansion coefficients �b��2��, can be found ana-
lytically at spherically symmetric donor position inside the
NC �see, e.g., Ref. 28 for the initial state�. Otherwise, the
energies and expansion coefficients are determined numeri-
cally.

IV. RADIATIVE DECAY RATE

Traditionally, indirect radiative transitions become more
extensive if phonons assist recombination. However, we
have found that doping with phosphorus can be an alterna-
tive and an even more efficient means to intensify the radia-
tive recombination channel.

Let us compute the transition rates between all possible I
and F states. Due to the degeneracy of both the initial and
final electron states, there are more than one basic transitions
I→F. Therefore, it is possible to introduce the rate �R

−1�I ,F�
for each I→F transition, with rate �R

−1 being the average.
Obviously, the donor-induced and the phonon-assisted tran-
sitions individually contribute to the total decay rate �R

−1�I ,F�
which, hence, may be represented as �D

−1�I ,F�+�ph
−1�I ,F�. In

the following, we calculate separately the donor-induced
�D

−1�I ,F� and phonon-assisted �ph
−1�I ,F� decay rates, as well as

their averages �D
−1 and �ph

−1.
When calculating �ph

−1, we neglect the �-� mixing caused
by the short-range field. Such a process weakly influences
the phonon-assisted radiative recombination. At the same
time, the valley-orbit coupling in the conduction band and
the central-cell corrections in the valence band affect the
decay rate. These processes transform wave functions ��I
and ��F, and correspondingly, the phonon-assisted recombi-
nation rate related to those in undoped dots.

The phonon-assisted radiative decay is the second-order
process. It requires a participation of both photon and pho-
non, as shown schematically in Fig. 1. Phonon mixes the
initial electron state having Bloch function �A1 with the in-
termediate states having Bloch functions ��15 and ��2�.
Also, the initial hole state �or, equivalently, the final electron
state� having Bloch function ��25� mixes with the phonon
with the intermediate state ��4. Our calculations show that
the phonon-assisted radiative transition through state ��2� is
less efficient and weakly contributes to �ph

−1�I ,F� and �ph
−1.

Decay rates �ph
−1�I ,F� are calculated with the Fermi golden

rule that can be written for the second-order process in the
form

�ph
−1�I,F� =

2

�
�
Q,�

�
q,�
��

i

UFi
�opt�UiI

�lat� + UFi
�lat�UiI

�opt�

EI − Ei
�2

� ����g�R� − ����Q� − ����q��

+ ���g�R� − ����Q� + ����q��� . �15�

Here, matrix elements of the electron-photon �U�opt�� and
electron-phonon �U�lat�� interaction operators are calculated
among the initial I, the final F, and the intermediate state i;
Ei and EI are the total energies of the intermediate and initial

FIG. 2. �Color online� Electron densities in the cross section z
=0 for the Bloch states �A1, ��2�, ��4, and ��15���25� �from left
to right, respectively�. White color corresponds to the electron-
density maximum, while black color corresponds to zero density.
The image size is a�a, where a stands for the lattice constant. The
spot in the center represents a lattice site substituted by the donor.
The radius of the spot coincides with the typical scale �−1 of the
short-range potential equal to Bohr radius divided by 0.82 �see Eqs.
�3� and �4� in text�. Bloch states �A1 and ��2� have maximal elec-
tron density at the donor site in contrast to states ��4, ��15, and
��25�, whose densities are equal to zero.
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states, respectively, including not only the energies of the
electrons �or holes� but also the energies of the photon and
phonon reservoirs. The phonon frequency of �th mode is
denoted as ���q� with q being the phonon wave vector and
the photon frequency of �th polarization is ���Q�, where Q
stands for the photon wave vector. �g�R� is the NC gap de-
pending on the dot radius.

The electron-phonon interaction operator is treated within
the framework of the rigid-ion model and is given by

U�lat� = − �
q,�

�
n,s

� �

2M0N0���q�
� Vns�eq�s exp�iqRn�bq�

+ eq�s
� exp�− iqRn�bq�

+ � . �16�

Here, N0 is the number of primitive cells in the crystal, M0 is
the mass of a silicon atom, Vns=Vat�r−Rn−�s� is the atomic
potential, where Rn stands for the position vector of the nth
unit cell, and �s represents the position vectors of two atoms
within the unit cell, �1=0 and �2= �1,1 ,1��a /4, bq�

+ and bq�

are the phonon creation and annihilation operators, and the
phonon polarization vectors are denoted as eq�s. Further
evaluation of UiI

�lat� and UFi
�lat� matrix elements is associated

with the Fourier transformation of Vat�r� calculated with the
pseudopotential method. The similar procedure was applied
by Glembocki and Pollak38,39 for computing electron-phonon
matrix elements in bulk silicon.

The electron-photon interaction is described by the opera-
tor

U�opt� = �
Q,�
� 2�e2���s;�d�

m0
2���Q�V0�d

3/2 �cQ� + cQ�
+ �eQ�p , �17�

where −e and m0 are free-electron charge and mass, respec-
tively, p=−i�� is the electron momentum operator, eQ� is
the photon polarization vector, the operator cQ� annihilates
and cQ�

+ creates a photon with the wave vector Q and polar-
ization �, and V0 stands for the volume of the electromag-
netic resonator. Function ���s ;�d�=9�d

5/2 / �2�d+�s�2 appears
due to the replacement of homogeneous media with bulk
permittivity �s by a spherical silicon nanocrystal surrounded
by a dielectric wide-band matrix with a dielectric constant
�d.40

Calculations of the phonon-assisted radiative decay rates
in accordance with Eq. �15� and using wave functions of the
initial, final, and intermediate states defined by Eqs. �5�, �10�,
and �13�, respectively, yield the results presented in Fig. 3.
We have plotted in the figure ratio �ph

−1 /�0
−1 of the average

phonon-assisted decay rates in the doped ��ph
−1� and undoped

��0
−1� NCs. As one can see, the phonon-assisted recombina-

tion in the P-doped dot is always slower than that in the
undoped one �dashed lines in Figs. 3 and 4�, except for the
case of the central-located donor in the NCs greater than 2
nm in radius. Nevertheless, even in this case, the decay-rate
increase does not exceed 1%–2%. In turn, maximal decrease
in the decay rate �about 50%� corresponds to the donor dis-
placement from the dot center h close to R /2. This is easy to
explain by the weakest overlap of the electron wave func-
tions of the initial and final states. Doping with high donor
concentration nD=2% �2 P atom per 98 Si atoms, which

corresponds to the phosphorus concentration 1 nm−3� is also
inefficient for the phonon-assisted radiative transitions—the
decay rate becomes 5%–15% less. Evidently, doping cannot
improve the phonon-assisted photon generation in silicon
crystallites.

Let us now consider the no-phonon radiative transitions
induced by the short-range donor field in quantum dots and
compute donor-induced transition rates �D

−1�I ,F� between all
possible I and F states, and average rate �D

−1. In order to
compute the rates we employ the Fermi golden rule for the
first-order process. After some algebra, one can obtain

�D
−1�I,F� =

4e2���s;�d��g�R�
3m0

2�2c3 �pIF�2. �18�

Here, c stands for the vacuum speed of light and pIF
= ��I�p��F. It is important to emphasize, however, that the
wave functions of the initial states in pIF are transformed into
��I= ��I+CI��2�����2�

, while the wave functions of the fi-

nal states remain invariable ��F= ��F �see Sec. III�.
Thus �Eq. �18��, the rate of the no-phonon radiative tran-

sitions induced by the short-range donor field is defined by a
squared magnitude of �pIF�� pIF= pcv�CI��2���. Here, pcv is
the so-called momentum matrix element arising usually in
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Radius �nm�
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Τ 0
�
Τ p
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h�0.9R

nD�2%

h�0

h�0.45R

FIG. 3. �Color online� Ratio of the average phonon-assisted de-
cay rates in the doped and undoped dots as a function of the dot
size. Dashed line: �ph

−1=�0
−1. Donor displacement h relative to the dot

center if the dot is single doped and the donor concentration, in the
case of homogeneously doped dot, is indicated in the figure.
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induced
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FIG. 4. �Color online� Average rates of the donor-induced �solid
line� and the phonon-assisted �dashed line� radiative transitions vs
the dot size for the single-doped dot. The phosphorus ion is located
at the dot center �h=0�. Inset: decay rate �D

−1 as a function of the
dimensionless donor displacement from the dot center—solid line.
Horizontal dashed line represents �0

−1.
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the Fermi golden rule for direct electron transitions. In the
frames of the free-electron model pcv=2� /a. For indirect
transitions in silicon crystallites, optical matrix element pIF
acquires additional small factor CI��2�� close to 0.1 for 2–3
nm crystallites and decreasing as the NC size increases. In
what follows, we shall find CI��2�� and calculate �D

−1�I ,F�
and �D

−1 for many- and single-donor cases.
Figure 4 presents a dependence of the decay rates on the

dot radius for the single-donor case when the phosphorus ion
occupies the dot center. If the phosphorus distribution in the
dot is of spherical symmetry, the initial and final electron
states may be symbolically labeled as � and M, and the rates
may be denoted as �D

−1�� ,M�. In this case it is possible to
show that six of the eight electron transitions are allowed,
and their rates obey the following equalities: �D

−1�↑ ,3 /2�
=�D

−1�↓ ,−3 /2��2�D
−1, �D

−1�↑ ,1 /2�=�D
−1�↓ ,−1 /2��4�D

−1 /3,
and �D

−1�↑ ,−1 /2�=�D
−1�↓ ,1 /2��2�D

−1 /3. The two residual
transitions ��↑ → �−3 /2 and �↓ → �3 /2� are spin forbidden.
Average decay rate �D

−1 is depicted in the figure. One can see
that in a wide range of the dot sizes, the donor-induced ra-
diative transitions turn out to be faster than the phonon-
assisted transitions in undoped NCs, whose average rate �0

−1

is shown with a dashed line. This trend is more pronounced
for smaller sizes, e.g., at R=1 nm, �D

−1 exceeds �0
−1 by more

than an order of magnitude. It is a consequence of the quan-
tum confinement effect. Due to the short-range character of
field W, matrix element ���2�

�W��� is, in fact, proportional

to the squared value of s-type envelope function �2�0�. Ac-
cording to Eq. �9�, it means that ���2�

�W����R−3 and

�D
−1�� ,M��R−6 and sharply rises as the NC size decreases.

However, such a relationship between �D
−1 and �0

−1 turns
into the opposite one if the donor shifts toward the NC sur-
face, see inset of Fig. 4. Beyond half the dot radius, average
decay rate �D

−1 drops with increasing h. The origin of this
sharp decrease lies in a strong weakening of the central-cell
interaction near the dot boundary and the wave-function re-
construction leading to a certain spatial separation of the
electron densities in the conduction and valence bands. In
particular, electron density in the conduction band tends to
accumulate near the donor, while the valence-band density
tends to occupy donor-free areas. Thus, the donor-induced
radiative recombination substantially decelerates as the sys-
tem asymmetry rises.

In the case of high and homogeneous doping, the system
completely restores its spherical symmetry. Moreover, the
spatial separation of the charge densities in different bands
becomes impossible because no areas, which would be free
of donors, exist in the NC. As a result, at donor concentra-
tions nD greater than approximately 1% �1 P atom per 99 Si
atoms�, we find the average rates �D

−1 to be much greater than
�0

−1 for all dot sizes, see Fig. 5. At nD=0, �D turns into infin-
ity, and the total decay rate �R

−1 is equal to �0
−1 �lowest curve

in Fig. 5�. Increasing phosphorus concentration leads to a
sharp rise of �D

−1 with respect to �0
−1, especially for bigger

crystallites, as is seen in Fig. 6. For instance, at nD=2%, �D
−1

becomes 1–2.5 orders of magnitude greater than �0
−1 as the

dot radius increases from 1 to 3 nm, respectively.
The increase in �D

−1 in the many-donor case is quite un-
derstandable based on the behavior �D

−1�h� in the single-donor

case. As shown in the inset of Fig. 4, the main contribution to
the acceleration of the donor-induced transitions comes from
the donors situated near the dot center. Increasing nD results
in an accumulation of the greater amount of donors around
the dot center. This increases the number of channels for the
donor-induced transitions, which shorten the time �D. As a
result, increase in the total rate �R

−1 turns out to be the same.
Obviously, from the viewpoint of photon generation, �-�
mixing due to the short-range field is more efficient than the
phonon assistance. The obtained values of the donor-induced
recombination rates are already comparable with typical val-
ues of the capture rates on dangling bonds �p. 223 of Ref. 8�,
especially for smaller crystallites.

The dependence �D
−1 on the donor concentration is an im-

portant feature of the donor-induced radiative recombination
in the many-donor case. This dependence appears in the re-
combination rate because of its proportionality to the squared
absolute value of ���2�

�W��I ��pIF�2 in Eq. �18��. In the

many-donor case, the short-range potential turns into the sum

W = �
j=1

N

W�r,h j� , �19�

where N is the number of donors in the NC and W�r ,h j�
stands for the single-donor field described by Eq. �4�. As-
suming the donor distribution to be of spherical symmetry,
one can set ��I= �A1�s, ���2�

= ��2��s, and write the matrix
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Radius �nm�
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R
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e
�1
�s
�
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nD � 2 %

�nD � 0.2 %

FIG. 5. �Color online� Total average recombination rate �R
−1

=�D
−1+�ph

−1 as a function of the dot radius at donor concentration nD

increasing with the constant step of 0.2% from 0 to 2%.
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FIG. 6. �Color online� Relative rate �0 /�D as a function of the
phosphorus concentration for radius R increasing with the constant
step of 0.5 nm from 1 to 3 nm �from right to left�.
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element ���2�
�W��I as integral �W�2�r�u�

��r�uA�r�dV, where

u��r����2� and uA�r���A1. Envelope function ��r� varies
on a scale of the NC size �2–6 nm�, while W�r ,h j� differs
from zero within 1–2 Bohr radii ��1 Å� around the donor
nucleus. Accordingly, when integrating �2�r� multiplied by
W�r ,h j�, we may take ��r� as a constant equal to ��hj�.
Then, using Eqs. �6� and �14� for the Bloch functions of A1
and �2� bands, respectively, and the explicit expression for
the short-range potential �Eq. �4��, one can obtain the matrix
element in the form

���2�
�W��I = − 4�3�Ag��� − �A + 1/�s − 1�g����e2N��2N,

where ��2N=N−1� j�
2�hj� and

g�x� = �x2 + 42/a2�−1 + 2�x2 + 202/a2�−1 + �x2 + 362/a2�−1.

Because ���, the term �A+1 /�s−1�g��� is negligibly
small compared to Ag���. Finally, supposing the homoge-
neous donor distribution in the NC, we replace the average
over the number of donors ��2N by the average over the NC
volume ��2V=V−1��2�h�d3h, which equals V−1 due to nor-
malization condition for the envelope functions. This yields

���2�
�W��I = − 4�3Ag���e2nD, �20�

where the average donor concentration nD has been intro-
duced as N /V.

Thus, by varying nD it is possible to manipulate the radia-
tive channel efficiency. Since, according to Eq. �20�,
���2�

�W��I�nD, dependence �D
−1�nD� is close to quadratic,

as shown in Fig. 6 for five different values of the dot radius.
Bearing in mind the proportionality of the PL intensity to �R

−1

and taking into account that �R
−1��D

−1 at nD greater than
�1%, one may conclude that IPL�nD

2 . However, the experi-
mentally observed dependence IPL�nD� is rather logarithmic
or rooted.20,21 As a result, the observed enhancement of the
PL intensity with increasing phosphorus concentration is not
so large, as one could expect from an increase in the decay
rate shown in Fig. 5. Perhaps, some other factors, except for
the decay rate, can influence IPL. In particular, the PL inten-
sity is directly proportional to the photon absorption cross
section �0. Dependence �0�nD� is unknown; therefore, an
exact description of the function IPL�nD� is not a simple task.

Nevertheless, the main statement, following from our
study, is that phosphorus doping influences not only the non-
radiative channel of the interband recombination in silicon
crystallites but also the radiative channel. The performed the-
oretical analysis exhibits a possibility of the substantial de-
crease in the radiative lifetime �R due to the short-range Cou-
lomb field of a phosphorus ion. In turn, this improves the
photon generation efficiency in silicon crystallites.

V. CONCLUSION

In this paper, we have considered only phosphorus as a
dopant. As was mentioned above, all the other donors of
group V, as well as the group III acceptors, except B and Al,
create short-range field that is more complicated compared to
the point-charge field �Eq. �4��. Correct description of these

fields requires an application of the first-principles methods,
which go beyond the frames of our study. Therefore, we did
not touch upon the problem of radiative recombination in
silicon NCs with various impurities of groups III and V. With
respect to boron and aluminum, it is possible to make some
conclusions related to their influence on the radiative decay
in Si NCs.

According to the calculations of Lipari and Baldereschi,41

boron may be treated, presumably, as a hydrogenlike accep-
tor that does not create the short-range field. On this reason,
efficient �-� mixing and the band-structure straightening in
silicon quantum dots are impossible under B doping. Such
conclusion is corroborated both theoretically4 and
experimentally.42

On the contrary, aluminum is an isocoric impurity for sili-
con as well as phosphorus. Consequently, aluminum ion pro-
duces the short-range field of the point-charge type similar to
that produced by the phosphorus ion �Eq. �4��. The only dif-
ference is that the short-range potential of the aluminum ion
will be of the opposite sign with respect to the one written in
Eq. �4�. This circumstance plays a crucial role in the elec-
tronic structure formation in Si NC doped with aluminum. In
this case, the valley-orbit interaction splits the sixfold-
degenerate ground state in the conduction band into the sin-
glet, doublet, and triplet as before. However, the singlet level
splits off upward because of the repelling character of the
short-range field of aluminum ion in contrast to the attracting
character of the phosphorus-ion field. At the same time, in-
dependent of the impurity type, the valley-orbit interaction
weakly influences the doublet and triplet levels. As a result,
the ground state in the Al-doped dot will be of the doublet or
triplet type, while the singlet state will be strongly excited. In
turn, the doublet or triplet states have �E or �T2 Bloch func-
tions, respectively, which slightly mix with the intermediate
states of the bands �2� and �15. This means that the �-�
mixing for the ground states in Al-doped dot is suppressed.
The �-� mixing of the singlet state is, of course, efficient.
However, the singlet state, being an excited state, does not
participate, in fact, in the PL. Therefore, it is not worth to
expect an improvement of light emission in silicon NCs in
consequence of their doping with aluminum.

Thus, summarizing our consideration, one can conclude
that the choice of phosphorus as a dopant was not arbitrary.
This impurity provides an efficient �-� mixing caused by
the short-range Coulomb field. Such a mixing is strongly
intensified by the quantum confinement of the NC, which
leads to the considerable acceleration of radiative electron-
hole transitions.
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